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Preface

The purpose of this study was to verify the

Imathematical corr,•ctness and to determine some of the

*limitations of the monostatic-bistatic radar cross section

(RCS) relationship developed by Robert. F. Kell.

Pntentially,the Radar Target. Srattering Facility, Holloman

AYR, NM1, could apply this relationship to reduce testirig

I ti me and] costs.

-A detailed mathematical formulation is provided. It

begins wiit~h the monostatic-bi-istatic equivalence theorem

3(MRFT). The MBET is a physical optics appro-i,:iation

relating monostatic and bistatic RCS. The derivf-.tion of

SKI:le's relationship is built upon the MBET and is

mathematically sound within the prescribed bounds.

KelleU's relationship was tested using computer

3 models. The results of the testing show Kell's method of

determining bistatic RCS from monostatic RCS measurements

3 has some merit.. Measurements are needed to establish the

limits to which Kell's method may be applied. Also, the

I complexity of the targets must be increased in order to gage

5 the accuracy of Kell's method under a variety of conditions.

In performing this study I have received help from

others. Of course, I am indebted to my faculty advisor,

Major Harry Barksdale, whose insight and guidance kept me

I moving in the right direction. I would also like to thank
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i
Captain Bill Oet.ting who never failed to re-spond positively

to my panicked cries for help and Captain Dennis Tavkett who

3 doevoted a great. deal of time and effort in the actual

piodurtion of this thesis. And, finally, a special

t.hanlks to my wife, Debbie, who endured it all with a smile.
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Abstract

Robert Nel1 developed a relationship between monostatic

"radar cross section (RCS) and bistatio RCS ¶3hereby bistatic

RCS can be predicted from monost.atin RCS measurements under

certain conditions. This study found Kell's relationship to

he mathematically sound given certain assumptions. Kell's

relationship was then tested by comparing computer generated

hi.tatie and monoststic cross sections for simple shapes.

Four parameters were varied during testing in order to

discern possible limitations of Kell's method: bistatic

angle, angle of incidence, electrical Si2 of the target,

Iand continuity. Results of the testing show Kell's method

has some merit. The difference between the bistatic RCS and

it-s related monostatic RCS for electrically larg,. spheres is

less than 1-dB up to bistatic angles of 80 For

electrically large flat. and singly c-urved surfaces the

monostatic and bistatic cross sections were within 3-dB for

* i angles of incidence up to 30" from broadside anrd bistAAiC

S. angles up to 15'. Finally, the accuracy of Kell's
00 relationship proved to be polarization dependent when

surface discontinuities in the form of 90 wedges were

I present.

xi.



VERIFICATION AND I.MIHTATIONS OF THE MONOSTATTC-BTSTATIC
RADAR CROSS SECTION REI..ATIONSHTP DERIVED BY KELL '

3 1. Tnt rnduct.ion

.. IOvervi e-

One method used to reduce the detentability of an

I aircraft. by radar is to shape it so the energy from the

radar is reflected away from the radar's receiver. By

reflecting the incident energy away from the receiver the

aircraft presents a smaller radar cross section (RCS) and,

therefore, is more difficult to detect. Monostatic radar, a

radar in which the radar's transmitter and receiver antennas

are noloncated, is more common than bistatic radar, a radar

with separated transmitter and receiver antennas. For this

3 reason, most aircraft designed to present a low RCS reflect

energy away from the direction of the transmitting source.

However, reducing the RCS in one direction using shaping

techniques results in an increased RCS in another direction

(Knott, 1985:10). Thus, even today's most stealthy

3 aircraft, those designed to hinder detection by radar at,

common flight aspects, may still be detectable by bistatic

radar receivers (Adams, 1988:27).

For military planners to project a weapon system's

I ability to penetrate enemy air defenses, it is necessary to

perform both monostatic and bistatic RCS analyses.

I

I



I Unfortunately, however, the evolution of bistatic RCS

prediction and measurement, techniques has not. kept pace with j
that of monostatic techniques (Hunka, 1978:243). Because of

the threat. bistati.c radars pose for even stealth aircraft

and the need to plan for and reduce that threat, methods

I need to be developed that accurately predict. bistatic RCS.

Baekground

The earliest radars were bistatic, but with the

appearance of mnnostatic radar in the 1930's bistatic radar

faded from prominence. Bistatic radar interest surfaced

again in the mid 1950's leading to bistatic radar

applications in satellite tracking systems and guidance

control in low altitude cruise missiles (Skolnik, 1961:20;

I Biggs and McMil]en, 1979:1). However, the development of

3 bistatic RCS prediction and measurement techniques did not

receive the attention monostatic RCS techniques enjoyed

until later.

Bistatic RCS measurements. Bistatic RCS measurements

I are inherently more difficult and complex than monostatic

measurements simply because the receiving antenna must be

moved for each measurement (Hunka,1977:243). The Air Force

3 Radar Target Scatter Facility (RATSCAT), an outdoor radar

range at Holloman AFB, New Mexico, uses a bistatic mobile

I receiver van to enhance the mobility of their receiving

antenna (Dynalectron Corp., 1985:43). However, they must

still deal with the complexities involved in bistatic RCS

I2
I
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I measurements not suffered by monostatic measurements. Eac'h

repositioning of the receiver calls for recalibration. This

mealts the target of interest must be replaced with a

calibration target so that background returns can be

identified. Multirath scattering must also be accounted for

I with each position. change. And, when all is ready, the

target, sometimes as large as a full scale model of a P1-B,

must be remounted. All of this takes a great. deal more timp

and costs conniderably more than monostatic measurements

(Tomko, 198R).

I Ristati. RCS prediction. Before the 1950's, the

scientific community in general felt the theoretical

calculation of a complex target's RCS was beyond the

Capabilities of the known technology. By the early 1950's,

approximation tenhniqut.s began evolving that allowed the

estimation of the RCS for such complex shapes as airplanes,

missiles, and satellites. Through experience and the

Uappearance of high speed computers the theoretical

estimation of an average monostatic cross section circa 1958

was within 4 dB of measured values (Crispin and others,

I 1968:v). Ristatic prediction methods were also developed

during this period, but there was no experimental data with

which to compare their accuracy (Siegel and others,

1955:305).

One could easily speculate that the previouslyI

I
I
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mentioned problems regarding bistatic RCS measurements were

the reason why bistatic RCS experimental data was in short.

supply. Because monostatin RCS measurements are much easier

to perform than histatir measurements, if a means of

predicting bistat.i RCS from monostatic measurements

were possible, it would be less cost]y and faster than

performing bistatic RCS measurements. This approach to

bistatic RCS prediction would be beneficial to operations

such as the RATSCAT.

Statement of the Problem

In 1965, Robert Kell presented a relationship between

rmonost.atic and bistatic radar cross section which appears to

offer a means of predicting bistatic RCS using monostatic

measurements under certain conditions. The purpose of this

thesis is to verify the theoretical accuracy of Hell's

relationship and to determine the physical limitations with

which Kell's method has practical application.

scope

The basis for Kell's method is developed first. This

development begins with a description of the monostatic-

bistatic equivalence theorem (MBET), the foundation of

Kell's method. Following this is the mathematical

formulation of Kell's hypothesis.

The results from an investigation in which Kell's

method is theoretically applied to specific shapes whose

4



,I
I bist.ati, cross section can be arcurately modeled are

presented. The accuracy of Kell's method when subjected tn

changes in either bistatic angle, electrical size, or

surface disRcontinuity will then be disnussed.

Approach

The limitations of Ke]l's method can be found

theoretioally by comparing computer generated bistatie radar

cross se,-tions to the equivalent monostatic cross sections

produced using Kll's hypothesis. Computer programs either

in u:i by Air Force agencies or developed from proven

monostat.i. and bistatic RCS models will be used.

Ki1•l suggest.s his method is most accurate in the high

frequency regime to about 10° of bistatic angle using

I targets dominated by spe¢cular returns (Ke]l, 1965:987).

This investigation will apply Kell's method to targets

meeting these conditions in order to verify the accuracy af

this method. The parameters of bistatic angle, electrical

size, angl,• of incidence, and surface continuity will then

I be varied so some of the limitations of Kell's method might

be brought out. In the case of surface continuity, a target

with 90* wedges will be used to determine the limitations of

3 Kell's relationship when surface discontinuities are

present.

I5
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N Summary of Remainina Chapters

Chapter TI is a development, of Kell's method. Tt

begins with a description of the monostatic-bistatic

5 equivalence theorem (MRET). A review of the literature

regarding the MBET is then provided. This is followed by

Ithe mathematical formulation of Hell's methnd.

3 Chapter ITTI describes RCS models for the sphere, flat.

plate, and cylinder for both the bistatic case and Kell's

equivalent monostatic case. Chapter TTT then presents the

results from the comparison of the two cases.

IChapter TV contains the conclusions reached from this

1 study and recommendations for further research in this area.

I
I
I
I
I
I
I
I
I
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I TT. Theory

Paekrmund

Robert Kell implies hiM method extends the moncst.atic

bistatic equivalence theorem (MBET) to include more general

cases (Kell, 1965:983). In an effort to offer a more

complete development of Kell's method, this chapter first.

present.s the MBET and donumentation supporting the concept.

of predicting histatic RCS from monostatic RCS.

Unfortunately, there has been little research performed in

this area. It. will be seen that the MBET relies upon

physical optics approximations, and therefore, it is

applicable to only those targets fitting into the

limitations set by physical optics techniques. The

i development of Kell's method shows his approach relies upon

the interaction between individual scattering centers. Kell

*ises the concept of reradiation lobe patterns of the

individual scattering centers to define the bistatic

scattering pattern in terms of the monostatic pattern and

i bistatic angle (Kell, 1965:983).

Monostatic-Histatic Equivalence Theorem

In general, discussions of bistatic RCS are divided

I into two areas. The first is concerned with bistatic angles

less than 180". The second case takes intc account bistatic

angles approximately equal to 180. This is known as

I7I
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I forward scattering. Tt has significantly differen' behavior

than biatatic scattering and is not addressed in this study.

In considering the case where the bistatia angle is

I-- less than 180,, Crispin and others developed what haa come

t.o be known as the monoatatic-bistati , cquivalenve theorem

I (MPFT), Referring to, Figure 1, t.his theorem claims as the

wavellength becnmes small compared to target size the

bist.atice cross spetion obtained with a transmitter direction A

and a receiver direction fie approaches the RCS obtained when

the transmitter and receiver are collocated at R + fie

assuming the target is sufficiently smooth (Crispin and

others, 1968:158). More succinctly, the MBET is saying the

bist.at.in RrS is equal to the monostatic RCS in the direction

5 of the bisector qf the bistatic angle as the wavelength

benomes very small.

k+ H. 1k

m z

Figure 1. Bistatic Scattering Geometry Depicting the
Bistatic-Monostatic Relationship

I B

I



I

i Prnof. Crispin offern the following proof for the MfET

(Crispin and others, 1PA:158). Radar Cross Spation as a

function of transmitter and ret-eiver paqitinn is derived as

rollows (Siegel and others, 1955lO). Assuming the surfane

of the snattrering body is perfect.ly conducting the equation

I • for the s-attered magnetic field is given by

r - 4w -ikR

where H scattered magnetic field

IA the unit vector normal to the surface

Ht = tangential component of the magnetic field
on the target's surface

R distance between the receiver and the
integrat. on point

k 2v/x (wave number)

i S region of integration (target's surface)

I By assuming the incident field is an infinite plane wave, Ht

can be approximated as twice the tangential component of the

incident mfgnetic field on the illuminated side. Letting

the incdent magnotic field have a magnitude Hi and

direction A allows H to be written as

H :2itHoeik() on the target's (2)
illuminated side

i0 on the target's shadow side

9I



where R a a unit vector directed from the transmitter,
assumed to be in the far field, t.o the origin of
the., ooordinat.e system

a radius vpntor from origin to any point on theI target.'�s rarfa•ce

tt a A - (A - A)*

I Ut1ing far field approximattionm

,I -ikR) = i-ikR )i .a

RR

andI
R t R" - Cosa (3b)

I where R" = distance from the origin to the receiver.

ho = a unit vector directed from the receiver to the
origin

Cosa0 = 1-I I.

Letting H. 1, substituting eq-.(2) and (3) into (1) gives

I - ikR"=s (4)
I ik- -) fn")](a

where F : j'[(n 0 o ")T - (A f)] (5a)

I ikF •(fi+R)

and fie ds (5b)

a- illuminated region of the target

I
I
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I The- RCS can now be expressed as (Crispin and others,

1968:1881

a : 4al 1Fx 2 + I'FY 2 + I.I 2 1 (6)

In Figure 1, the transmitter is planed on th" i axis

I anti the receiver is constrained to lie in the y-? planp.

With this configuration the monnstatin case ig definedt by

no a $Sin* - fCosS (7a)

R a Psino - ICosn (7b)I
A : RCoso + PSin*Cos* + ASin#Sin* (70)

i while in the bistatic' case

I a: Sin2O - 1Cos20 (81)

3 R : -* (Sb)

& : *Cos# + MSino (Sc)

Considering the vector f as the wavelength becomes small

compared to the target

-- (fi+R) ik"° * (A0+o÷ )d (9)

Ifiy+RI11ý

For the monostatic case, eq. (9) becomes

F = Jfik'F " 00o0 jd a (10)

I
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I And in the bivtat.h r'asp, eq. (9) beconeS

U ?,~~~J~~1kF * 2in* 5 ()

I
where f- =Sin* - ICose

UF.\luatinrg eqn.(10) and (11) by etatinnary phase yiealda

3 - I[ASin* - RACon*] Pxp(ikr) (sonostati. ease) (12)

f = [PATRno - P.AI exp(ikC Coas) (biatatir ease) (13)

3 Substituting PqR. (7) and (10) for the monoatatic eaae into

eq. IS)

ik •- rAikC(.Zo.so + kSi:•vCoR.O + ItSinoSine] (14)

Applying eq. (14) t.n eq. (6) giveS the monostatie RCS

am =(kA) 2 /iv (15)

Now, substituting eqs.d8) and (11) for the bistatic case

3 into eq. (5)

-i [A exp(ikC Co,,)Jt(SinSin2.)(Tan,- 
-)

3 _ (Tan*SIn2* + Cos2e)(*Coso + tSino)] (16)

Again, applying eq. (16) to (6) gives the bistatic RCS

Ib = (kA) 2 /n (17)

I
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Comparing eqs. (15) and (17), it can b" seen that an

wavplength becomes small compared to target mine th.

monortatic RCS taken on the bisector of the hietatic ungle

3 is equivalent to the histatia RCS.

The equationn the MAET is develop•d frnm, eqs. (1) and

i (2), are dprived using physical optics techniques (Siegel

m and othprs, 1953:10). Tierofore, the MRFT is valid only if

t.hp re~tric.tionR required by physical optics are satisfied.

m Thnnp restrictions are given below (Skinner and Jost,

198R:21)

3 1. The target must have a large enough RCS that higher

order effent.s do not make a significant difference.

2. The target must be significantly larger than a

m wavel ength.

3. A significakit. amount of the target's surface ahould

m be within apprnximat.ely 450 of the normal of the bisector of

the transmitter and receiver. I

4. The target must be perfectly condueting.

3 These restriction limit the applicability of the HBET. Two

studies were found, however, in which the MIET was used to

determine bistatic RCS.

Documentation supporting the NBET. Riggs and McHillen,

in their efforts to formulate the bistatic RCS of a prolate

spheroid, found the MRET returned accurate results. The two

discrepancies these researchers noted when comparing

measured data with data obtained using the MEET were within

113



U one percent and were attributed to the fact the MBFT

i1• requires the target be infinitely removed from the

transmitter and the receiver. When it. is not, the bistatic

3 receiver is not looking at. the exact same spot as the

nmonost.atic receiver (Biggs and McMillen, 1979:13).

I Coleman, while testing an aircraft. RCS computer

prediction method, MTSCAT ITt, against measured data of the

F-5 aircraft, found histatic angles up to 16' had little

effect. on the RCS. This made the MBET attractive. By

taking advantage of this approximation he was able to reduce

program running time for the bistatic case for small

bistatic angle to that of the snonostatic case.. At the.same

time, he was able to resolve some inaccuracies by avoiding

3 certain elements within the b'istatic RCS derivation

(Coleman, 1977:34).

Tn the process of applying the MBET, Coleman developed

error estimates for parallel, perpendi.cular, and cross

polarizations. His interpretation of the error estimates

reach the same conclusions that. Kell does in the development

of his approach. First, the RCS is determined by the

I relationships between scattering center. The second, that

the equivalent monostatin RCS includes the factor Cos(0/2)

where B is the bistatic angle (Coleman, 1977:43).

3 Kell's Method

Kell developed a method to obtain bistatic RCS using

monostatic RCS measurements. His method uses the concept of

14



1 reradiation lobe patterns from individual scattering centers

g~t~o define the bistatic RCS In terms of monostatic patterns
and the bistatic angle. Kell's approach uses the MBET by

3 relating the bistatic RCS to the monostatic RCS viewed on

the bisector of the bistatic angle by a factor of Cos(0/2)

U ~(Kell, 1965:983).

Mathematical formulation. The geometry Kell used is

I given in Figure 2.

TRANSMITTER

I0
0I

TARGzIB
IBTRI

3RECEIVER d

F~igure 2. Bistat~c: Coordinate System with Antennas3 in the x-z Plane

It can be seen in Figure 2 that Kell aligns the bisector of

the the bistatic angle, O, and the centroid of the target

along the z axis. Applying the Stratton-Chu equation for



the scattered magnetic field to this geometry, Kell arrives

at the following expression for the bistatic*RCS (Kell,

1965:985)

J T(z) exp(ik2zCos(0/2)]d7 (18a)j

I
whereI
1(z) HfAf x h) x F-O(e + +f~r)e f

A x Fs)ei x p(e,z) de (18b)I

I The derivation of eq. (18) can be found in appendix A.

Kell made the following observations regarding eq. (18)

(Kell, 1965:985):

a) I(z) is an exact description of the surface

geometry, illuminating and observing ray geometry, and

I surface wave propagation effects

b) While eq. (18) has the form of a physical optics

expression it is not a physical optics expression because

1(z), in this case, is exact as opposed to a physical optics

approximation

I c) Eq. (18) can be divided into a sum of subintegrals

whose end points correspond to scattering centers. The end

points of each subintegral are determined by the range in z

3 over which the respective integrands are continuous.

I16
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According to Kell, the phase of a given scattering

center plays a large role in the contribution that

scattering center makes to the total RCS. The magnitude of

the contributrion of an individual scattering center to the

overall return is directly related to the area covered by

I the scattering center. The size of the area of the

scattering center is directly related, in turn, to the phase.

of the scattering center. All points with phases within r/2

3 of the scattering center's phase contribute positively with

the snatt.ering center's return. The greater the area within

I in/2 of the scattering center's phase the greater the

contribution from that. scattering center. This concept

applies equally t.o both monostatic and bistatic RCS

3 (Kell, 1965:985).

Differences will often arise between bistatic RCS and

monostatic RCS viewed on the bisector of the bistatic angle

as the bistatic angle changes. Kell relates these

differences to the following changes in the scattering

3 centers (Kell, 1965:9R5):

a) Changes in the phase of scattering centers relative

3 to other centers

b) Changes in strength of the radiation from a given

I scattering center

c) Change in the number of scattering centers.

Looking at eq. (18), phase is clearly dependent on the

3 bistatic angle by a factor of Cos($/2). Kell couples this

I17



factor with the wave number k and then views a change in

3 bistatic angle as a change in wavelength. As the relative

wavelength changes with bistatic angle the area within n/2

wavelengths of the scattering centers also changes (Fell,

1965:985).

I The radiation strength of a scattering center is

dependent. on the strength of the surface current, among

other things, at. that location. With changes in the

bistatic angle there can be changes in the tangerntial

components of the incident field resulting in a change -.ti

Sthe surface currents.

Kell describes the appearance and disappearance of

scattering centers as aspect angle and target geometry

dependent and declines furLher explanation (Kell, 1965:985).

The determination of bistatic RCS. Kell approximates

the target. by breaking it into a collection of discrete

scattering centers. Those centers directly illuminated by

the incident wave are termed simple centers while those

3 illuminated by reflections from other parts of the target.

are termed reflex centers. Kell's addresses only the simple

Sscattering centers. Using the concept of discrete

scattering centers, Kell then derives the total RCS by

summing the product of the individual center's RCS and a

3 relative phase term (hell, 1965:986):

[ =1/2 exp(io,)] (19)
m=I

Iis
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where o = total ROS

M = number of discrete scatterers

OM = RCS of the mth scattering center

S= phase of field scattered by the mth center
relative to that scattered by the first center,
and where om is evaluated for the desired
polarization.

Tn examining the relations between the monostatic and

histatie RCS for a given aspect. angle e, Kell expresses the

individual scattering center's phase in eq. (19) as a two-

I term sum (Kell, 1965:9R6):

Om = 2 kzm(e)Cos(B/ 2 ) + Cm (20)

where zm(e) = distance between the mth and the first phase
center, projected on the bistatic bisector
axis

Cm = residual phase contributions of the mth
center

The bistatic RCS for scattering centers that do not move

3 with changes in bistatic angle can now be written as (Kell,

1965:986)

M 2
o(e) E= (Om)l/2 exp[i2kzm(e)Cos(B/2) + iCm]I (21)

Kell uses eq. (21) to make a statement for monostatic-

bistatic equivalence and the conditions required for its

* occurrence.

If for a chosen aspect angle, the following conditions
hold:

I 19
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I) The RCS may be written as a squared sum of fields
from discrete scattering centers, andI 2) The amplitude om , position Zm, and residual phase

M are insensitive to the bistatic angle 0 over the
range of B considered, for those centers which are
significant. members in this sum;

it then follows that the bistatic cross section of
aspect angle 0 and bistatic angle P is equal to the
monostatic cross section measured on the bisector at a
frequency by the factor Cos(0/2) [K~ell, 1965:987].

Implementing Kell's method. The step-by-step process

t.o employ Kell's method calls for first measuring the

monostatic• cross section as a function of aspect angle and

I at a frequency higher than the one desired for the bistatic

data by a factor of Secan t (0/2). The reason Kell raises the

frequency can be seen in eq. (18). As previously expla'.ned,

phase changes are indicated by the factor Cos(0/2)

accompanying the wave number k. This can be considered a

I change in wavelengt.h or frequency corresponding to a change

i in bistatic angle. The measured monostatic data is then

translated along the aspect angle axis 0/2 degrees and the

measurement. frequency is reduced by Cos(0/2) (Kell,

1965:987).

Summary

It was demonstrated theoretically that the MEET

provides a relationship between monostatic and bistatic RCS

I when physical optics approximations are valid. The utility

of the MBET for small bistatic angles was shown in the work

performed by Coleman.

I
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Kell's method approaches the problem of equating

bistatic RCS and monostatic RCS in much the same way as the

MHFT in that it uses the same scattering geometry and is in

the high frequency regime. Unlike the MBET which

approximates surface currents to determine RCS, the

theoretical basis for Kell's method lies in the summation of

the contributions from individual scattering centers. His

mathematical formulation of this hypothesis is exact tup to

the point where he makes far field approximations and

evaluates the bistatic RCS integral using stationary phase

mehtods. According to Kell, the change in the contributions

from the scattering centers with changing bistatic angle is

due in large part to changes in the relative phase of each

scattering center. For small bistatic angles, Kell reports

phase will change by a factor of Cos(B/2). Kell noticed

that the Cos(5/2) factor occurs with the wave number k.

Viewing this as a change in frequency, Kell hypothesizes

that monostatic RCS is equal to bistatic RCS when the

frequency of the monostatic case is increased by a factor of

Sec(0/2).

Kell's method could be tested theoretically by

ýomparing computer predicted monostatic cross sections to

bistatic RCS predictions.

21



ITT. Result-s

There are proven RCS prediction methods that can

accurately approximate bistatic RCS as well as monostatic

RCS for certain shapes. Kell's hypothesis can be tested by

comparing data derived from bistatic prediction methods with

that obtained from monostatic approximations at

appropriately adjusted frequencies and aspect angles. Three

simple shapes are used to prove the accuracy and limitations

of le11's hypothesis. These are the sphere, square flat

plate, and right. cArcuilar cylinder. An exact s3lution is

used to predict. the RCS of a sphere, physical optics methods

are applied to approximate the RCS of a square flat plate,

and, finally, the RCS of a right circular cylinder is

obtained using geometrical theory of diffraction techniques.

Testing Kell's Hypothesis

Kell's hypothesis can be tested theoretically by

comparing the predicted bistatic RCS to the predicted

monostatic cross section at the bisector of the bistatic

angle. The bistatic RCS is calculated for each target at

designated angles of incidence with the bistatic angle

varying from 0" to 60" in I' increments for the square flat

plate and the cylinder while the range of bistatic angles

for the sphere is 0* to,90* in 1* increments. All bistatic

RCS predictions are made at a constant frequency.

Monostatic RCS predictions are made at aspect angles equal

1 22
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to the designated angle of Incidence plus half the bistatic

angle. The monost.t-ic RCS prediction frequenny In increased

by a factor of seoant(0/2) (0 = bista:.io angle) above the

frequency used for the bi.ttatic case.

The accuracy of Nell's theory can be determined by

eomparing the dat-a obtained from each method. A plot of

I bistatir RCR and monostatic RCS versus bistatio angle at a

given angle of incidence shows how closely Kell's equivalent

monostatic RCS coincides with the bistatic RCS as bist.atic

angle inereases.

Sphere

Approach. In the case of a perfectly conducting

sphere, the exact solution for the bistatic cross section of

a plane electromagnetic wave is taken from the Mie series.

It is (Bowman, 1969:400)

I (0,) 47t [ Sl1(0)! 2 Cos 2 (,) + 1Szefl 2 Sin 2 ( .)] (22)

where,

I. ( n _aP(Cs_) p__Coae)

n(-I) 2n+l [ n (o --) nsin ] (23)
Sn=lX ~ F bl Sn e n S

n b (Cose) ap (Cose)

U ,23
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* s bistatic angle

U a angle between plane of stattering and the plane
containing the incident E field and the direction
of incidene"

and (Knott, 1985:90)

a =  'ka) (25)n h 1)lka)
n

Ib - kajn 1 (ka) - nj nl kS) (26)un kah( 1 )(ka) - nh( )(ka)
n-I n

with

jn (ka) = spherical Bessel function

h1)(ka)= spherical Hankel function of the first kindn

k = 21/x (the wave uumber)

a = sphere radius

For the monnstatic case, eq. (22) reduces to (Bowman,

1969:401)

a 47 (a))n 2n+1 12 (27)
.2n~ n(n+l) n n

The geometry describing scattering from a sphere is

given in Figure 3.
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I

I Figure 3. Scattering Geometry for a Sphere
(Knott, 1985:89)

U Two comput.er programs given in Appendix B were used to

derive the RCS of various sized spheres% One program, a

product of Ohio State University that is used on the Wright-

Patterson AFB indoor radar range for calibration purposes,

gives an exact solution for the radar cross section of a

I spher.o for any number of

U bistat~c angles. For this study, the bistatic angle was

varied from 0" to 90* in increments of 1. The second

program is a modified version of the first program. It

computes the monostatic RCS of a sphere over a range of

discrete frequencies with each frequency increased by a

factor of secant(D/2) over the previous frequency. B is the

bistatlc angle and ranges from 0" to 90' in increments of

I
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1I. Varying the frequency in this way directly relates the

equivalent monostatic RCR data In a one-to-one

correspondence to the bistatic RCS obtained for each

bistatic angle.

Figures 4 through 27 show the relationship between

bistatic RCS and the RCS obtained using Kell's aethod. Six

sphere sizes of ka equal to I, 3, S, 10, 30, and 50 at 10

iGHP were examined using horizontal and vertical

polari zat ions.

Near resonant size sphere results. A comparison of

Figures 5 and 7 show there is a significant difference

between vertically and horizontally pllarized bistatic R(OS

and between bistatic and monostatic RCS for an electrically

small sphere (ka = 1). The differences are caused by

creeping waves. For a vertically polarized field as shown

in Figure 4, boundary conditions for a perfectly conducting

surface require the tangential component of the surface

electric field to be zero in the x-y plane.

IX

I
Figure 4. Creeping Wave Scattering in the x-y Plane

I 26
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Therefore, vertically polarized creeping waves

contribute to the monostatic RCS, but as the bistatic angle

increases in the x-y plane, creeping waves no longer scatter

in the x-y plane and the bistatic RCS decreases.

For horizontal polarization, Figure 7 demonstrates the

erpeping wave "ontinues to nontribute as the bistatlc angle

I inrrpases. Tn the rase of ka a I (Figure 7), the phase of

the creeping wave is relatively insensitive to changes in

bistatic angle. This allows the creeping wave contribution

to equal that. of the monostatic case at bistatic angles

greater than 45%.

IThe effect.x of creeping waves can also be seen in the

RCS data for spheres ka z 3 (Figures 9 and 11) and ha a 5

(Figures 13 and 15). The horizontally polarized creeping

wave continues to contribute to the RCS, however, creeping

wave phase is becoming more sensitive to changes in bistatic

I angle as the sphere becomes larger. Bistatic and monostatic

I RCS are in agreement to approximately 35* of bistatic angle

for ka = 3 and only 8" of bistatic angle for ka 5. For

the case of vertical polarization, the bistatic and

monostatic RCS begin to diverge at 1 to 2 degrees of

I bistatic angle for ka=3,5.

This data demonstrates Kell'% relationship cannot

account for creeping waves that are polarization dependent

and, therefore, is not suitable for electrically small 0

targts.

I
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Large sphere results. The equivalent monnstatic cross

I section values are very close to those predicted for the

bistatic case. Much of the slight differences between the

two cases are caused by creeping waves. This can be seen in

Figures 17, 19, 21, 23, 25, and 27. Attenuation due to the

larger electrical path lengths of these larger spheres

causes the reduction in creeping wave effects. Looking at

Figures 18, 20, 22, 24, 26, and 28, Kell's method is very

good well beyond 10° for doubly curved surfaces with no

surface discon•tinuit.ies and at high frequencies.

I
I
I
I
I
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Flat. Plate

A Using the geometry given in Figure 29g the

bistatic RCS for a perfectly conducting square flat plate is

expressed as

2

a a 4It SIn[•ka2S•2•in* + SIn( +f )) ] 2(ka/2)(S -no *5n(49) (28)+
where

0 a angle of incidence

3 a bistatic angle

a = length of side

II

Figure 29. listatic Scattering Geometry for a
Square Flat Plate

The equivalent monostatic cross section uses a

different geometry, shown in Figure 30, because Xell's

method requires the monostatic aspect angle bisect the

I bistatic angle. This changes eq. (28) to

42
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Figure 30. Equivalent Monostatic Scattering GeometryI for a Square Flat Plate

The derivation of eqs.(28) and (29) can be found in

appendix C. These are physical optics approximations.

Using physical optics to compute the RCS of a flat plate

limits the size of the angle of incidence that can be

accurately modeled to about 40" from broadside (Knott,

1985:174). This is because physical optics does not account

I for edge effects (Skinner and Jost, 1988:8).

Only one polarization is used, i field in the x-z

plane. Because edge effects are not considered and the

plate is square as opposed to rectangular, Kell's method can

be adequately described with one polarization.

I
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Flat plate results. It. can be seen in Figures 31

through 42 that Kell's method degrades as the angle of

incidence moves away from broadside. Figure 31, broadside

incidence, shows Kell's method holds beyond 20' of bistatin

angle. When the angle of incidence is between 8* and 24'

from broadside, Figures 33, 35, and 37, the lobe maximums

l are in close agreement to about 16" of bistatic angle. The

nulls, however, are significantly different. The large

differences in nulls cause the oscillation between 0" and

1 20" of bistatic angle in the plots showing the difference

between bistatic and equivalent. monostatic RCS, Figures 34,

I 36, and 38.

3 The agreement between bistatic and equivalent

monostatic RCS breaks down before 10' of bistatic angle as

the angle of incidence from bro:Aside becomes large. From

Figures 39 and 41, significant differences begin to occur at

the first null as was seen at smaller angles of incidence;

3 the second lobes, however, do not agree.

44
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C-) inder

Anroa.k The RCS of a perfectly conducting right

circular cylinder is dominated by diffraction at most aspect

angles. For this reason, the geometrical theory of

diffraction (GTD) is used to calculate its cross section

(Anderson, 1965:3-21). According to GTD, the illuminated

PdgPs of the cylinder shown in Figure 43 as S 1 , S2, and S 3

are the major contributors to the cylinder's RCS (Anderson,

1965:3-21).

I

I ,

II

I
Figure 43. Cylinder Geometry

I The directions of incidence and reflection are constrained

to lie in the x-y plane. The electrical polarization is

vertical when in the z direction and horizontal when in the

I x-y plane (Anderson, 1965:3-21).

The RCS of a perfectly conducting right circular

cylinder is expressed in eq. (30) (Anderson, 1965:3-22).
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4 r it IPieiPl + 4 JP + p,,e J3j 2 (30)
where

3IPe~ (2 xk)"~ 1/2 in+SnOBj

x ex~p(-12kja(SinO + Si.n(0+0))

+ h(CosO + Coa(+O+)f)]

x {[Cos(2,t/3) - Coa(29/3)V1-

T [Cos(2w/3) - Cos(2(in+2e+8)/3)]F1) (31a)

jP 2 e11i t 4 Sin(27t/3) r. a 1/2

P2I2tk / LS1T'O + Sin(e+5O)]

x exp(-i2k[a(SinO + Sin(e+O))

I-h(CoSO* + s8+)]

x f[Cos(2n/3) - Cos(20/3)V1 1

T ICos(2ir/3) - Cosi(2(2e+B)/3) FI) (31b)

(2nk)l /2 [ine+ iOBJ

"x expli2k[a(SinO + Sin(9+0))

"x ([Cos(21t/3) - Cos(20/3)]-1

T [Cos(2,R/3) - Cos(2(v-2O-0)/3)F_1 ) (3-1c)

Ie = angle of incidence in degrees from end-on

8 bistatic angle

h =half the cylinder's length
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I a = cylinder's radius

k = 2A/x (wave number)

Analytic singularities occur at . = 0' and 0 = 90*

in eqs. (31a)-(31c). Therefore, at 0 0'. the RCS is

computed using eq. (32) (Anderson, 1965:3-24).

a = 1[ka 2Cos(0/2)] 2  (32)

At e = 90', because only edges S1 and S2 are illuminated,

U eq. (30) reduces to (Anderson, 1965:3-24)

a = 4kah 2Cos(B/2) (33)

3 Thp derivations of eqs. (31a,c,b), (32),and (33) are given

in appendix D. Computer data generated from eqs. (31)-(33)

I Was compared to measured data for the monostatic and

bistatie case (B = 10'). The predicted monstatic case was

within 3-dB of the measured data between 4' and 86' of end-

on while the predicted bistatic case was within 5-dB over

the same range of aspect angles.

I Cylinder results. It's obvious something is amiss when

viewing Figures 44 and 45 in which the angle of incidence is

end-on. The disparity arises from how the two cross

3 sections are calculated. In the bistatic case, eq. (32) is

used for all bistatic angles. The equivalent monostatic

I case calls for eq. (32) when the monostatic angle of

incidence is equal to 0", but when beta does not equal 0' it

uses eq. 30. In doing this, the bistatic RCS is calculated
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I as if the target is a diac which allows the use of the

physical optics approximation given by eq. (32). The

equivalent monostatic RCS is calculated the same way when

the angle of incidence is end-on, but once the equivalent

monostatie angle of incidence is no longer exactly end-on

IJ the target becomes a cylinder and GTD approximations are

m applied. Tn short, scattering for the equivalent monostatic

case is being modeled as either purely specular or purely

3 diffrantion. Neither of these conditions is likely at small

angles from end-on. For this reason, no conclusions can be

I drawn regarding the accuracy of Kell's method when either

the angle of incidence or bistatic bisector are end-on.

5
I
I
I
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It can be seen in Figures 47-65 that Kell's method is

polarization dependent. Vertically polarized cross sections

are smooth curves while horizontal polarization produces

rapid fluctuation with deep nulls. This results from the

fset that the scattered fields from a right-circular

cylinder are polarization dependent.This is demonstrated in

Figure 46.

I bAli

I "S T-E
I '".

I s !0.01.5 a oo

ILL *o a I-L
Cotrbuis 03 N on: sro asW (Adrsn 0 6M:3W.8s
Su~j. 'SIc -&S? S~eE (BACeful

Figure 46. GTD Applied to Right-Circular Cylinder to ShowContributions from Illuminated Idtes

(Andersons 1965:3$-28)
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I The plots shown in Figure 46 depict the RCS magnitude of

each of the major scattering centers with respect to aspect

angle. The vertically polarized RCS is dominated by the

return from S1 except at end-on and broadside. Therefore,

the fluctuations in the cylinder's vertically polarized RCS

are governed by changes in phase from S1 as the aspect angle

changes. This results in relatively smooth curves which can

he seen in Figures 47, 51, 55, 59, and 63.

When the polarization is in the horizontal direction,

Figure 46 shows th&t the RCS is no longer dominated by one

scattering center but. is a combination of two or three

scattering centers at all aspect angles. With each change

in aspect angle there will be a change in the phase of the

scattered fie(ds from eaoh scattering center. Combining the

7,hases from each scattering center produces an overall phase

that is sens.tive to aspect angle changes. This results in

rhpid fluctuations in RCS which can be seen in Figures 49,

53, 57, 61, and 65. Because of the sensitivity to aspect

angle, the equivalent monostatic case does not. track the

bistatic case well.

I Kell's relationship holds up better for vertical

polarization because the relative phase between the

cylinder's scattering centers is less sensitive to changes

in aspect angle than the horizontal case.
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I When the angle of incidence from end-on in 30", Figures

49-52, the vertically polarized cross sections are in close

agreement through 10" of bistatic angle as before. The

]obes of the horizontally polarized cross sections have

about a 1-2 dB difference to about 10' of bistatic angle,

I however, the nulls are significantly different at 5"

bistatic angle.

Another observation can be made regarding Figures 47-

65: as the angle of incidence approaches broadside the

bistatic angle for which the bistatic and equivalent

i monostatic RCS agree becomes larger. This concurs with the

data obtained for the square flat plate. For both vertical

and horizontal polarizations near broadside, the

U contribution from scattering center S3 is negligible while

S1 and S2 have similar diffraction coefficients and phase.

I This results in low sensitivity to changes in aspect angle

and good agreement between bistatic and equivalent

monostatic RCS.

I

I
I
I
I
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Tt. can be seen in Figures 67 and 63 that the same

problems occurring at end-on also occurred at broadside.

The only difference between the two is that. broadside

bistatic RCS uses eq. (33) while and-on uses eq. (32).

There is little difference, though, in theme equations and

I the overall effect in the same.
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IV. Conclusion

The purposc of this study was to investigate the

applicability of Robert Kell's method under varying

conditions. The mathemathical formulation of Kell's..

relAtionship was first. examined. This was done, by--

>. presenting the proof for the monostatic-bistatic, equi al.enbe

theorem (MBET), the foundation of Kefl's-methodi and,

rese.i,'oh supporting the MBET. It was brought out that. the

MBET is a physical optics approkimation and,".tberefore, it',

is limited by physical optics requirements. The

Sma.aematical formulation of Ke'll's method was. then

rresente1. With this formulation it was shown Kell's method

does not rely on approximations ot the soattered fields but

.2pon the scattering centers of the target. The accuracy of

Kell's method is dependent ,upon the behavior of the

individual scattering centers relative to each other as the

bistatic angle changes.,,

3 Kell's method was theoretically applied to three shapes

of varying comiplexity to determine some of 'its limitations.

The sphere was used to show how well Kell's method predicted

bistat.in RCS for electrically small targets as compared to

large targets. Also, the effects of' creeping waves were

exam;ned. A square flat plate was analyzed to investigate

the effects angle of incidence have upon the accuracy of

Kell's method. Finally, a r~ght circular cylinder was
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studied to determine what success Kell's method would have

predicting the bistatic RCS of a target containing surface

discontinuities.

Conclusions

This investigation was conducted to determine the

3applicability of Kell's method as certain parameters were

changed. These parameters are bistatic angle, electrical

_ size of the target, angle of incidence, and surface

continuity. The following conclusions were reached.

Bistat.ic..Angle. Kell claims his relationship works

best. when the scattering centers are insensitive to changes

in bistatin angle. The scattering centers of an

I" electrically large, sphere are insensitive to changes in

bistatic angle relative to one another at high frequencies.

As a result Kell's relationship proved to be quite accurate

for spheres at high frequencies beyond bistatic angles ofI 80. The scattering center of the flat plate and circular

cylinder are least sensitive to changes in bistatic angle at

high frequencies near broadside incidence. Under these

condition, Kell's relationship was accurate (less than 2-dB

difference between bistatic and equivalent monostatic RCS)

to 20" of bistatic angle for the square flat plate and 30"

for the cylinder.

Electrical size. The sphere was the target shape used

to predict the accuracy of Kell's method when the electrical

size of the target is varied. It can be seen in the data
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that. good accuracy, less than I-dB difference for both

horizontal and vertical polarization did not occur until the

sphere became large (ka 10). Much of the inaccuracy for

smaller spheres can be attributed to the inability of Kell's

method to account for creeping waves which have small effect

on the RCS of electrically large spheres.

Angle of incidence. It can be seen in both the flat

plate and cylinder data that the bistatic angles for which

the bistatic and equivalent monostatic RCS agree decreases

as the angle of incidence increases from broadside. For the

Sflat, plate some of the degradation in agreement between the

bist.atic and equivalent monostatic RCS is attributable to

the inability of physical optics to accurately model RCS as

the angle of incidence from broadside becomes larger than

45". In the case of the cylinder using horizontal

_ polarization, the difference between bistatic and monostatic

RCS is due to the interaction of the diffracted fields from

the scattering centers. As the aspect angle approaches end-

on to the cylinder the diffracted field becomes more

sensitive to changes in aspect angle and Kell's relationship

I loses accuracy.

Surface continuity. The agreement between bistatic and

monostatic RCS becomes polarization dependent when surface

3 discontinuities in the form of 90" wedges are present. The

relative phase between scattering centers was sensitive to

* changes in aspect angle when horizontal polarization was

I
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tiutiIized. This resulted in poor agreement between the

bistatic and equivalent monostatic RCS. Because one

scattering center dominated the RCS when vertical

polarization was employed, the relative phase between

scattering centers was insensitive to changes in aspect

I angle giving better agreement between the bistatic and

equivalent monostatic cases. Overall, Hell's relationship

produced better agreement between bistatic and monostatic ..

RCS when the surface was electrically large and free of any

surface discontinuities such as a sphere's than when

I significant discontinuities such as 90° wedges are present.

Recommendations for Further Study

Other avenues of study to determine the limits of

Kell's method include:

1. A comparison of measured bistatic RCS data with

measured monostatic RCS data at appropriately adjusted

frequencies is a required step in the process of verifying

Kell's relationship. Initially, electrically large, simple,

and continuous shapes should be measured. These shapes

reduce higher order effects and their RCS is not affected by

diffraction from discontinuities. The complexity of the

shape can then be increased to include edges such as on

plates, discontinuous surfaces such as the mating of a

spheroid and cylinder, and multiple reflections like those

found in a hollow cylinder or corner reflector. Also,

various materials and polarizations could be measured using
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-- the same approach.

2. Using the approach this study followed, either more

rigorous computer modeling of the simple shapes used in this

investigation or computer modeling of shapes resembling

aircraft. such as cylinders with hemispherical or spheroidal

end-caps could be examined. The RATSCAT has some bistatic

R(S measurement dat-a of such shapes. Comparing their data

wiith data derived using Kell's relationship using computer

modeling would give a good indication of the accuracy of

Kell's relationship.

3. Study the corresponding behaviors of the monostatic

and bistatic RCS keeping the bisector of the bistatic angle

oriented at. a constant aspect angle to the target as the

bistatic angle increases. This approach could be used to

study the accuracy of Kell's relationship when viewing a

I particular surface discontinuity or to present. the data

provided in a study such as this one in a different light.
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Appendix A

The fol.lowing derivation presents the mathematical

formulation Kell employed in an effort to relate bistatio RCS

to monostatie RCS.

Radar cross section can be expressed in terms of the

Poynting vector (Herr, 1951:33):

a 41x i2 (34)

ao radar cross section

gs = back scattered Poynting vector

Si :incident Poynting vector

For l t IHl(o /Eo)( 1/ 2) and taking the time average

value of S, eq. (34) becomes

S = (1/2)I I 11I (35)
av

and, therefore,

[ 0o/E 0 )(1/ 2 )lHsI 2]/2

a 4rR2 (36)[ (o/%) (]1/2) 1fI• 12]/2

Reducing and assuming far field gives the starting

point for Kell's formulation:

a o = 4n lim Ro - (37)Ro-- "s I'il, 2 (
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where HR = is= reradiated magnetic field

Ro = distance to observer

Solve for HR using the Stratton-Chu equation (Stratton,

1941:466):

f (iWE ) j x V9 e' + (1m xp

- x ) da (38)

SM =magnetic current density

J= electric current density

I m magnetic charge

a magnetic vector on target surface

Ts electric vector on target surface

free s Geikro/roS:free space Green's function (e / 0
ro = distance from elemental area to observer)

If we assume there are no sources within the target volume

then Stratton's equation can be reduced to give the right

I hand side of Kell's equation (2) given below (Kell,

1965:983):

[ x ro r 0

i- ikr.
-iwe(A x E )(eko)/r.] da (39)

HR magnetic vector amplitude of reradiated field

= phase of reradiated field relative to chosen
reference
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I da = element of area on surface of target

If a unit. vector normal to target surface and
pointing inward

Figure 69 relates the target to the incident and scattered

fields.

"TI A 4 1 M I 'l-rT ' P • . x

I/ II ~ E i 'JE

Figure 69. Bistatic Coordinate System with Antennasin the x-z Plane (Kell, 1965:984)

Ke1l gives the relation between ri, ro, Rig Ro, z and

las

(r t+ro) = 2zCos(D/2) + 2(Ri+Ro) (40)

This is incorrect. The correct relationship is

(r t+r o) a 2zCos(0/2) + (RI+Ro) as Ri and Ro (41)I
I 
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Kell normalizes the surface fields by dividing by the

absolute magnetude of the incident field. He then accounts

-- for illumination phase delay at each elemental area by

dividing by ei(kri+o). This is summarized in eqs (42) and

(43).

-1 IF51 _ i(kr•+,) P~I -i _•kr+. )
For e- e kio = 9. and IisW-i e kio

I �whr l i hIHi exp(i(kri+o)) (42)
i ~~~x I(l i.~i ,pi(kri+ o) (43)

where

Fs = normalized electric vector

•h = normalized magnetic vector

_ = phase difference between the incident field
- (either electric or magnetic) and the local

field at da

Using far field approximations

'iekro = ik (ikro)(44) 0

And recognizingIEil (45)

I Equations (42)-(45) can be substituted into (39) to

give

1oMR X -4-i[(e x h Hieikri+)1) x fo(ikeikro)/ro

+ (fi"•hOKHIe i(kri+o)) ,°ike ikro)/r°

I -iw(uo0 /o) 1/(A x 9sIH9le )(ekr+l lleikr 0)roJda (46)
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l Rearranging the above equation gives

3 OHR a .I mitJ((A x R. i (krti~) ) xP(k o)r

+ (Rs e1(kri+o) )Po(ikeikr0)/r]

_ iW(uo/fo) l/ 2 (fi x ;*e i(krH+e))eikro)/rolda (47)

Knowing that w(po/6 0 ) 1/ 2 : k and making the far field

In approximation ro - Ro , eq. (47) can be written

I- Ig.i I'
0 HR 72-R~o [-i(fi x h eik(ri+ro) ) x to(e g

+i(fi'hseik(ri+r°) i*o

+~ ~ 0(~~ )(e )to

-i(fA x e eik(ri+ro))ei] da (48)

Using the relationship given in eq. (41), the phase term

in eq. (48) can be rewritten asI
ik(ri+ro) i2kzCos(0/2) Ik(Ri+Ro) (49)I

By writing the imaginary expression i as e in/2 and using eq.

I (49), eq. (48) becomes

I oi IA (ei+Ro)eim/2 (f

Io. (HRh(i')o- (=x 2x)e Ie

xe ik2zCos(0/2) da (50)

Any specific geometry will be dependent on 0 and z,

therefore, eq. (50) can be rewritten using p(@,u), a
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oonversion factor relating the surface element. da, to the

differential coordinate product dedz to yield Kell's eq. (6)

with one difference, the ei /2 term:

"I - Ri eik(Ri+Ro! I•i) / [

+ (aK.h) (e P)t - (At x 16.)e

x p(e,z) eik2 aCoa(f/ 2 ) dedz (51)

Using eq. (51) in (37) yields

Cy i ik(Ri+Ro) e i i/2 (fi x b) x P0 (e i,>, =o 
ff iýe[ a x h' ) x e

+ (fi-h.)(e )Jr - (ft x 9s)e 'j

----- ik2zCos(0/2)
x p(*,z) e dOdz (52)

By allowing the magnitude squared of eik(Ri+Re) eiw/2 to

equal 1 and integrating eq. (52) with respect to 0, the RCS

is given by

j J(-) i2kzCos(-/2) dz (53)

where

T(z) f J[(ft x R.) x P0 (e1o) + (l9)ýt
- (ft x )eio] p(e,z) eik2zCos(0/2) do (54)
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Um The following comments can be made regarding eq. (53):

a) Tt has the form of physical optics.

b) The difference between eq. (53) and physical

I optics lies in the fact that eq. (53) is exact. However,

the T(z) term in eq. (53) is not precisely known.

c) T(z) is a composite of surface geometry,

illuminating and observing ray geometry, and surface wave

propagation effects.

d) The analytic continuity of T(z) signifinantly

effents a since eq. (53) may be subdivided into a sum of

int.egrals, each subintegral taken over a range of z withing

which its integrand is continuous.

e) Approximations of 1(z) yield contributions

dependent only on the integral's endpoints.

f) The endpoints are the scattering centers.

IFrom this logic, Kell proposes that RCS can be

computed from discrete scattering centers as shown below:

a m (am)l/ 2 ei m 2 (55)

I = number of scattering centers

om RCS of m scattering center

Om =phase of field scattered by mth center
relative to the phase of the first
scattering center

According to Kell, eq. (55) is used to determine the

I relation between monostatic and bistatic RCS for a given

aspect angle 0. Expanding the phase term in eq. (55)
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Im = 2kzmCon(0/2) + trm (56)

m where Em = distance between Ist and mth scattering center

a residual phase contributions (creeping waves,

Fubst.itu.t.ing eq. (56f into (5-5):

I- o mi 1/2 i 2 kzmCoS(e/2) 2
___ O =( a m ) e ( S T )

I lIel uses eq. (57) to make a statement for monostatic-

hist.atin equivalence and the conditions required for its

occurrence:

Tf for a chosen aspect angle, the followingI• n~onditions hold:

1) The RCS may be written as a squared sum of fields
from discrete scatterirM centers, and
2) The amplitude (am) , position zm, and residual
phase tm are insensitive to the bistatic angle 0 over
the range of 0 considered, for those centers which are
significant members in this sum;

it. then follows that the bistatic cross section of
aspect angle * and bistatic angle 0 is equal to the
monostatic cross section measured on the bisector at a
frequency lower by the factor Cos(0/2) [Ke]1,1965:917].

I
I
I
I
I
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Appendix R

This appendix presents the computer programs used to

calculate the blstatic and equivalent monostatic RCS of a

sphere. These programs were developed by Ohio State

University in 1978. They were then modified by AFWAL for

iuse on the indoor radar range at Wright-Patterson APR. The

first program, BTSPH.FOR, computes the bistatic RCS.

MONOSPH.FOR is a modification to BISPH.FOR. It calculates

monostatic RCS at a frequency adjusted by a factor of

Sec(0/2) (0 = bistatic angle) to give a one-to-one

i correspondence between bistatic RCS and monostatic RCS.

-<(( BTSPH.FOR »- ------
C
C THIS PROGRAM GENERATES SPHERE CALIBRATION DATA FOR
C THE SWEPT FREQUENCY SYSTEM
C
C OUTPUT---MAGNITUDE: IOLOG(RCS)-40; RCS IN SQUARE CM
C PHASE: RADIANS; FROM SPHERE CENTER
C
C MODIFICATIONS: THIS PROGRAM WAS MODIFIED FOR USE ON A
C PDP-ll/23. OUTPUT IN NOW STORED IN ONE
C 2-DIMENSIONAL ARRAY YM. THE PHASE IS
C GIVEN IN RADIANS. OUTPUT GOES TO AN
C UNFORMATTED FILE.

COMMON BUFFNDIM,ANSTAINC
COMPLEX ETHIEPH
character*2Ooutput_file
REAL KA
DIMENSION AM(2000),PH(2000)
INTEGER*2 INFILE(15)
BYTE BUFF(35000)
LOGICAL VHPLBK

!DATA PI/3.141593/
DATA LT,LF/-1.0/
CONST=2.*PI*l.E9/300.E6
RTD=180./PI

C
C
C ---- DEFINE RANGE GEOMETRY
C SPHERICAL SCATTERING
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I WVRTTSE('3,*) 'INPUT T FOR VER POL AND F FOR HOR POW4
ACCEPT *, VHP
WRITE(6,*) 'INPUT ANTEKNNA START SEPARATION IN DEGFREES'I ACCEPT *, ASD
asdp~asd
write(6,*) 'INPUT ANTENNA STOP SEPARATION IN DEGREES'
accept. *, asdl

THBp~thh
PHR=-9O.I IF(VHP) PHB=180.
write(6,*) 'ANTENNA SEPARATION INCREMENT >= 1 DFEG'
accept. *,dela
nba=(asdl-asd)/dela+1 .01I C
WRTTE(6,*) 'INPUT SPHERE DIAMETER IN INCHES'
ACCEPT *,SDT
WRTTE(6,*) 'TNPIUT MTN FREQ. (GHZ):
ACCEPT *, FMIN
ANST=FMIN* 1000.I WRTTE(6,*) 'INPUT MAX FREQ. (GHZ):
ACCEPT *, FMAX
WRTTE(6,*) 'FREQUENCY INCREMENT (GHZ):I ACCEPT *, DELF
write(6,*) 'Type in output filename'
re~ad(5, 15) out~put file

15 format(a20)I ~NF=(FMAX-FMIN)/DELF+1 .1
NDTM=NF

SRCM=SDI*2 .54/2.I ~SRM=SRCM/ 100.

AINC=DELF* 1000.I CKA=CONST*SRM
FREQ=PMTN-DELF

CI C===START OF LOOP===-
C

C

FUNCTION CATAN2 (Z)
COMPLEX Z
RZ=REAL(Z)
FIZ=AIMAG( Z)
CATAN2=ATAN2 (FIZ, RZ)I RETURN
END

C

C
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SUBROUTINE GPS(VHP,1KA,EV,ETH,EPH)
COMPLEX ETH,EPH,ETHT,EPHT,ETHI ,EPHT
REAL KA
LOGICAL VHP
IF(VHP) THENI ~THT= 180.
PHT: 180.
CALL FTIED(1. ,KA,THT,PIIT,ETHT,F.PHT,TER)I ETH=FTHT
THT=1 80. -2*EXV
PHT=18Q.
CALL FTELD(I. ,fA,THT,PHT,ETHT,EPHIT,TER)
F.TH=ETH+ETHI

ELSE
THT=180.
PHT=-90.
CALL FTELD(l. ,KA,THT,PHT,ETHT,EPHT,IER)
F.PH=EPHTI ~THT=180.-2. *EV
PHI =90.
CALL FTIE1D(1.,KA,THT,PHI,ETHT,EPHT,TIFR)I EPH=EPH+EPHI
ENDITF
RETURNI END

C BISTATIC-BACKSCATTERFD FIELD OF A SPHERE
C

SUBROUTINE FIELD(TIMCON,KA,THE,PHT,GTHEGPHI,TER)

'IC TTMCON=TIME CONVENTION=+1.0 FOR HARRINGTON (-JWT)
C -1.0 FOR STRATTON (+JWT)
CI ~COMPLEX J ,GTHE,GPH , SGTHE,SGPHT ,BN,CN

DIMENSION SJ(150) ,SY( 150) ,DSJ( 150) ,DSY( 150) ,DP( 150)
DOUBLE PRECISION TPCERR,ANGDIF,P( 151) IDEFI DOUBLE PRECISION U,DCOS,DSIN,V
REAL KA

C
C =====DEFTNE CONSTANTS
C J=SQRT(-1)
C TPCERR=TOTAL % CHANGE ERROR ALLOWABLE BETWEEN
C SUCCESSIVE ITERATIONS TO DEVINE CONVERGENCEIC TPCMAG:TOTAL % CHANGE IN MAGNITUDE ACTUALLY
C OCCURRING BETWEEN SUCCESSIVE LOOPS.
CI ~DATA PI,J/3.141593, (0.,1. )/

DATA TPCERR,ANGDIF/1 .OD-20,1I.OD-2/

C -==--INITIALIZE VARIABLES
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GTHEF=CMPLX(O. ,0.,)
GPHI:CMPI-,X(0. ,0.)
SGTHE=CMP1LX(0. ,0.)
SGPHI:CMPLX(O. ,0.)

MO=150
CALL. SPHEBES(FA,SJ,SY,DSJDSY,MO1,MAX)

c
C=====7-LTMTNATE ZERO ORDihR TERMS FROM TH7 ARRAYS

MAX=MAX- 1I DO 5 L=1,MAN
L 1,--T.+ 1
SJ (L) =SJ (1,1,)
SY (L) =SN(LL)

DSY(L)=DSY(j:L)

5 CON'TTNUF

CHKTHE=AFIS( 180.-THE)
IF (CHT(THE .LT. ANGDIF) GOTO 20
IF (ABS(THE) .LT. ANGDTF) GOTO 15

CALL POIY2(DEF,U,M,MAXN,P)

DO 10 =,A
DP(N)=(FLOAT(N+1)*U*P(N)-FLOAT(N-M+1)*P(N+l)

&*V/1 .-U**2)
P(N)=P(N)/V

10 CONTINUE

15 DO 16 N=1,MAXI ~FN=FLOAT (N)
DP(N)=.5*FN*(FN+1.

P(N)=(*l)*DP(N)
16 CONTINUE

GOTO 40

20 DO 30 N=l,MAXI FN=FLOAT(N)
P(N)=0.5*FN*(FN+1)*(-l.)**N
DP(N)=P(N)

30 CONTINUE
C
40 DO 50 N=1,MAX

AN=(-1. )*FLOAT(2*N+1 )/FLOAT(N**2+N)I 14N=AN*(SJ(N)+KA*SDJ(N)/(SJ(N)+KA*DSJ(N)-J*
&(SY(N)+KA*DSY(N)))
CN=AN*SJ(N)/(SJ(N)-J*SY(N))
GTHE=GTHE+BN*DP (N) -CN*P (N)
GPHI:GPHI+BN*P(N) -CN*DP( N)
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AA=CARS (GTHE-SGTHE)

BB:CARS (GTHE)
CC=CABS(GPHT-SGPHT)
DD=(,I 'BS(GPHI)I ~IF (Bb .NE. 0.) GOTO 44
AA=0.
BBR].I 44 lF (DD .NE. 0.) GOTO 45
CC=0.
DD=1.

-15 TPCMAG=AM/BB+CC/DDI TER=N
IF (TPCMAG .LF. TPCERR) GOTO 60

SGTHE=GTHEI SGPH1=GPHT
50 CONTINUE

T FR=0

I 60 GTHE=TIMCON*GTHE*J*COS(PHI*PI/180. )/KA
GPHT=TIMCON*BPHI*J*SIN(PHT*PI/18O. )/KA
RETURNI END

C

SUBROUTINE---------------------------------------------
C

C X=ARGUMENTIC BJ=SPHERTCAI4 BESSEL FUNCTION ARRAY
c IBY=SPHF.RICAL NEUMAN FUNCTION ARRAY
C BP=PRTMED BESSEL FUNCTION ARRAYIC YP=PRIMED NEUMAN FUNCTION ARRAY
c IDM=MAX NUMBER OF ORDERS TO BE COMPUTED
C MAX=MAX NUMBER OF ORDERS ACTUALLY COMPUTFD
C
C COMPUTATION IS STOPPED WHEN THE VALUE OF A NEUMAN
C FUNCTION MAGNITUDE IS GREATER THAN FMAX WHICH IS
C DEFINED INTERNALLY TO THE PROGRAM.I C

DIMENSION BJ(1) ,BY( 1) BP(1) ,YP( I)
FMAX=I .E35I ~FMINN1 .E-38
SX=STN(X)/X
CX=COS(X)/X
FF1=SX

FF2=SX/X-CX
VYI:-CX
YV'2=-(CX/X+SX)I ~BY(I ):YYI
BY(2)=Y72
BYB=YY1
BYC=YY2
1=2
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20 BYA=BYBU ~BYE: BYC
BYCz(2.*I-1. )*BYB/X-BYA

I IF (L .I.E. 1DM) kiY(L)=BYC
AY1=ABS(BYC)

IF (AYI .LT. FMAX) GOTO 20
MAX=T- I
BJB=0.
BJA=FMIN4
1=MAX

50 T=1-1
BJC=BJB
BJR=BJA
BJA=(2 . 1+3 )*BJB/X-BJC
L=T+l
IF (L .LE. 1DM) BJ(L)=BJA

IF (I .GT. 0) GOTO 50
ALF=BJ(2)/FF2
IF' (ABS(FFI) GT. ABS(FF2)1) ALF=BJ(1)/FFII ~ALF=1 ./ALF
K=MAX
IF (K .GT. IDM) K=TDM
DO 60 I:1,K

60 BJ(T)=BJ(I)*ALF
BP(I )=-BJ(2)
YP( 1 k-BY(2)
DO 80 I=2,K
TM=I-l
FAC=I/X

80 YP(I)=BY(IM)-FAC*BV(I)
RETURN

END
------------------------------------------

CI C ASSOCIATElD LEGENDRE POLYNOMIAL SUBROUTINE
C
C FOR HARRINGTON'S DEFINITION OF THE ASSOCIATED
C LEGENDRE PLOYNOMIAL DEF=-1.

LEEDEPLNOILDF1
C FOR THE OTHER DEFINITION OF THE ASSOCIATED

C
SUBROUTINN POLY2(DEI:',',M,MAXN,P)
DOUBLE PRECISION DEFtX,P(l) ,SQoDSQRTDBLEI DOUBLE PRECISION FL19FL2,FLI
SQ=DSQRT(1. ODO-X**2)
P( 1):1 .DOI ~IF (M .EQ. 0) GOTO I
DO 2 L=1,M
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P( I)=DEF$DBLRE(FLOAT( 2*L- ) )*S9Q*P( 1)
*2 CONTINUE

1 P(2)mDRLF.(FIOAT(2*M+l))*X*P(1)
DO 3 K=3,MAXN
I=K-1

FLI:DBLE(FLOAT(N+N-I))
FL2=DLBE(FLOAT(M+N-1))
FL3=DBLE(FLOAT(N-M))
P(X):(FL1*X*P(I)-FL2*P(J))/FL3I3 CONTINUE

END)

FUNCTION ACOS(N)IDOUBLE PRECISION DSQRT
DATA PT/3.141593/
IF (X GE. 1.) GOTO 1I ~IF (X .LE. -1.) GOTO 2
ACOS=(PI/2.)-ATAN(X/DSQRT(I.DO-x*X))
RETURN

1 Aro!,,O.

2 ACOS=PI
3 RETURN

END

The following routine is the differenne between

IBISPH.FOR and MNSHFR
C--------------- MON0SPH.FOR»>>>=========

CIC BISTA~ric SCATTERING FROM A SPHERE
C

open(unit=1O,'jtatus='NEW' ,file~output~file,err=100)
write(10,*) 'mph. Sep. Angle freq Mono.'Iwrite(10,*) 'size (des) (OHz) RCS'
write(1O,*) '(in)'
DO 45 jjzl,nbaI aad~asdp~jj-1

thb=180.
frer,,-fmin*1/(coa( .5*asd/rtd))
KA=CKXA*.FREQ
CALL FIELD(1.sKATHBPHB,ETHEPHIER)
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IC
C RCS FOR HORIZONTAL POLARIZATION
C

IF(VHP) THENI ~RCS=AREACM*CARS(ETH) **2
PH( I )CATAN2(ETH)*RTD

C
C RCS FOR VERTICAL POLARIZATIONI C

ELSE
RCS=AREACM*CARS (EPH ) **2I ~PH( I )CATAN2(EPH) *RTD

ENI)IF
AM(I)m1O. *ALOGIO(RCS)-40

w rit~e( 10,50) adi ,asdlfreq,AM( I)U45 cont inup.
close(unit=10)

100 write(6,*) 'Filename already exist~s!!''
50 FORMAT (f5.2s2X,FIO.4,2X,FI01 4 ,2XFIO.4)
101 continueI STOP

END
C

I C--------------------------------------------



This appendix presents the derivation of the

I mathematical model for the RCS of a square flat plate using

physical optics approximations. Following the derivation is

the computer programs used to calculate the bistatic and

3 equivalent monostatic cross sections for a flat plate.

The geometry utilized in this derivation is given in

I Figure 70.

I r

i Figure 70. Scattering Geometry for a Square Flat Plate

The incident and scattered propagation vectors are

I constrained to lie in the x-y plane.

IThe incident electric field can be expressed as

(Harrington, 1961:140)

I ~ ~ Et=E Jk(xCos* + ySine) (8
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I The scattered electric field can be expreAsed as

(Harrington, 1961:140)

i kE 0 ao2,eJkr Sin[k(a/2)(Sin* 4 Sin#))]RZ = Cos* (59 )
J2vr k(a/2)(Sin*e+ Sine)

I From eqs. (35) and (36), RCS is given by

a a 4w li --- a (60)

Substituting eqs. (58) and (59) into eq. (60) yields

[a2 Sin[k(a/2)(Sine + Sin')]12

it ._OR (61)s k(a/2)(S~n* + Sine) (

From Figure (70), it can be seen 0 : *+B. Substituting

this relationship into eq. (61) gives the expression for

m bistatie RCS in terms of angle of incidence and bistatic

angl e:

12 ~~~~Sintk(a/2)(Sino + Sin(*4D))it CJ1+# (2mCo ) k(a/2)(Sine + Sin(t++)) (6•)

i In accordance with Kell's hypothesis, the aspect angle for

the equivalent monostatic case is equal to the angle of

incidence plus half the bistatic angle. Applying this

concept to eq. (61) gives the equivalent monostatic RCS as

[ .2 4 -/ 
Sin[ka 

Sin(*+#/2)]
1t7 ka Sin(*+#/2) (63)
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I

The computer programs calculating the bistatic and

I equivalent monoatatic RCS follow. These programs are

written in BASIC and run on a Zenith 7-100 cotputer using an

8-hit. CP/M operating system.

I I * R************SlsS*SSBSTATIC R~~s~asasssi

2 'THIS PROGRAM CALCULATES THE BTSTATTC RCS OF A SQUARE
3 'FLAT PLATEI 4
5 'OUTPUT: 10*LOG(RCS); RCS TN SQUARE METERS
6
10 OPEN "O",1,"B:FPRCSB.DAT"
11

12 'DEFINE VARIABLES
13 'L LENGTH OF ONE SIDE IN METERS
14 'WL = WAVELENGTH IN METERS
15 'THETA = ANGLE OF INCIDENCE
16 'BETA BISTATTC ANGLE
17
20 L=0.304830 PT:3.141593

40 DIM RCS(181)
44

45 '1 = ANGLES OF INCIDENCE
46
50 FOR 1=0 TO 40 STEP 8
60 AS = "ANGLE OF INCIDENCE="
70 PRINT*IA$;I
74 3

75 IN = BISTATTC ANGLE
76
so8 FOR N = 0 TO 60

90 THETA =PI*1/1S0

100 BETA = N*PI/180
I 10 WL=O.03

140 J = L*PI*(SIN(THETA)4SIN(THETA+BETA))/WL
150 IF J = 0 THEN 16k ELSE 160
IS0 RCS(N)=4*PI*(LA2*COS(THETA+BZTA)*SIN(J)/(J*WL))A2

161 GO TO 170
162 RCS(N) 4PIT*(L^2*COS(THETA+BETA)/WL)^2
170 NEXT N
190 FOR K=0 TO 60
210 RCS(K)=10*lOG(RCS(K))/2.3025851
220 PR!NT#1,USING"####.#*# ";KRCS(K)
230 NEXT K
235 NEXT I
240 CLOSE#1
250 STOP
260 *
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I 'l ***$$**#*$***$EQUIVALENT ONOSTATTC RCS*************
2I3 'THIS PROGRAM CALCULATES THE MONOSTATIC RCS OF A SQUARE
4 'FLAT PLATE AS A FUNCTION OF FREQUENCY IN ACCORDANCE
5 *WITH KILL'S HYPOTESIS

'OtrrPUT: 10LOG(RCS); RCS IN SQUARE METERS
A I
10 OPEN "O" 1,"B:FPRCSF.DAT"
11

12 'DEFINE VARIABLES
13 IL : LENGTH OF SIDE IN METERS
14 'WI. : WAVELEAGTH IN METERS
15 'THETA : MONOSTATIC ASPECT ANGLE
16 'BETA a BISTATIC ANGLE
17
20 Lz0.3048
30 PI:3,]4159i

i40 DIM RCS(181)
45 DIM FREQ(100)
47
48 'I z ANGLE OF INCIDENCE FOR BISTATIC CASE
49
50 FOR 1=0 TO 40 STEP 8
60 AS R "ANGLE OF INCIDENCE="I70 PRTNT#I*A$;l

74
75 'N = BISTATIC ANGLE IN DEGREES

I ~76
so ;OR N = 0 T';O 60
90 THETA z PI*(T+N/2)/180
I100 BETA : N*PI/180

10 WL=0.03SCOS(BETA/2)
130 FREQ(N) : 3E8/(WL$1E9)
140 J a L*PI*2*SIN(THETA)/WL
150 IF J a 0 THEN 162 ELSE 160
160 RCS(N)a4*PI#(L^2*COS(THETA)*SIN(J)/(J*WL))A2
161 00 TO 170
162 RCS(N) : 4*PIS(L'2*COS(THETA)/UL)^2I 170 NEXT N
190 FOR K:O TO 60
210 RCS(K):IO*LOG(RCS(K))/2.3025851

I 220 PRINT#IIUSING"*#*##.## ";FREQ(K),RCS(K)
230 NEXT K
235 NEXT I
240 CLOSE#4
2 50 STOP
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This appendix presents the derivation of the RCS model

for a right,. cireular cylinder and the computer programs used

to val-ulat.e ita bimtati. and equivalert monontatic RCS.

The derix'fttion of the RCS Is taken from "ProJent DTSTRACT-

I riat.?,ihbt."d Radar Connepts and Techniques," Appr-.Idix A,

rornp1l Aprnnaut.infl Laboratory, Inc.

The Rr, of a finite cylinder is dominated by diffranted

retiurn•. For this reason, geometri-al theory of diffraction

(GTD) im used to• compute the RCS,, A general diffraction

3 oeffirient. is written -a

I

D Z.e ,/4Sin(vn [(Cos(x/n)-Coa( ,.a*))- I
n ,•ino (2 A• ) 1i/f

I T (Cos(a/n)-Cos{(o'+a'+vl/rl)- 1 (64)

U
where a* = angle of incidence

0" = angle of diffraction

n = T/w (T = exterior wedge angle)

= angle between the incident ray and the posit.ive
tangent to the edge ( w : w/2 in this appendix),

k : 2s/) (wave number)

Polarization determines the choice of signs used in eq.(64).

Vertical polarization (E parallel to the edge of the wedge)
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I uses the upper sign. Horizontal polarization uses the

lower. Angles 0' and a' are defined graphically in Figure

71. Because a right circular cylinder has V = 270",

n 3/2. With 0' = i/2, eq.(64) becomes

2 ei / 4 Sln(21t/3) -I
D(12ik)1/2 [(Cos(2n/3)-Cos(e'-a'))

t' (Cos(2n/3)-Cos(2(e'+a'+n)/Z))-] (65)J
INCIDET RAY DIFFRACTED nAY

Figure 71. Diffraction at Edge of Cond-jcting Wedge
(Anderson, 1965:A-3)

The diffraction coefficients for the cylinder shown in

Figure 72 can now be derived in terms of the incident and

I diffracted fields angles of incidence and diffraction,

Vi and vs, respectively. The edges contributing to the RCS

are labelled S1, S2, and S3 . The fourth corner is not

illuminated and does not effect RCS if the cylinder is large

compared to a wavelength. Converý:ional references for 0i

and 0. are shown at the center of •he cylinder.
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The diffraction coefficier.s resulting from each illuminated

edge in Figure 72 are

Di V 2 e i /4,Sin(2/I/3)

H1 3 (2rk) 1/2 .s(3- )

I (Cos(2 n/3)-Cos(2( n+vs+Oj)/3))-] (66a)

D V 2 ei- 4 Sin(2n/3) [(C(2A/3)-C

D2H = (2 k)1/2 s -i))

; (Cos(2it/3)-Cos(2(Vs+thi)/3) ) 1 ] (66b)

eir =Sin(2/3) [(Cos(2-n/3)-Cos(p."v1 ))

(2 (rk) 1/2 )

T (Cos(2n/3)-Cos(2(7t-V -vi)/3))-] (66c)

The diffraction coefficients given in eq. (66) are for

two-dimensional right-angle edges. Because a cylinder has

curved edges it is three dimensional. The curvature is

I accounted for with a geometrical spreading factor used as a

weighting function. Letting s be the distance from the edge

to the receiver along the scattered ray and i be the radius

of curvature of the of the diffracted wave front, the

weighting function can be written as

[s(1 + P- S-/2 (67)

Because s >> p, eq.(67) can be written

pl)112/a as Pl/s . 0 (68)
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II
The curvature of the diffract.ed wavefront, I, is related to

the angles of incidence and diffraction and the cylinders

I curvature by
I p I

Pi P (69)Pl=Cose + Cos• 69

w'here p is the cylinder's radius and 0 and b are defined in

Figure 73.

It

/r ae

I Figure 73. Angular Relationships for Geometric Factors

(Anderson, 1965 :A-7 )I

I10
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I

From this, the geometrical spreading factors for each edge

* are

[(P11)l/2]/s =[P12 )1/2]/s = [a/Sinvi+Sinvs)]1/2}/s (?Oa)II

ip13)1/2]/s = {a/-Sinvi - Sin t'8)]1/2)/s (70b)

The minus sign occurs in eq. (70b) because the edge at S3

curves in the opposite direction when compared to S1 and S 2 .

The phase angle associated with a diffraction point is

related to the distances the incident and scattered fields

travel. With s defined as the distance from the point of'

diffraction with respect to a fixed reference plane and b

I the distance the incident field travels relative to a fixed

reference plane, then from Figure 74, s rs - ds , and

b ri - di , for edge S1 .

I 74 //o i

II

= Figure 74. Phase of a Diffracted Ray
(Anderson, 1965:A-8)
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I AI
Tt ran be derived from Figure 74 that

d1 1 aSinn' + hCosvi ('MRa)

and

dsj aSinv5 +hCosts (71b)

I!
Usirng this logic, the phase terms can be written

eiIl(SI+bl) eik[2r-a(Sint'i+Sintis)-h(r 'i+CnR )(.

ik(s 2 +b 2 ) ik[2r-a(Sin~i+Sinj's)+h(Coqsi+Cosgps)] (72b1

iks 2 (72b)

Iik(n3+bJ) = Pik[2r+a(Sinvi+Sinvs)-h(Cossi+ros•'s) (720

By GTD, RCS as a function of the angles of incidence

and diffraction is given by

2

a(vi,rs) 4tr2It~ta (73)
A

where Utotal = sum of all rays diffracted toward the
receiver

Combining eqs. (66), (70), and (72), diffraction at

each illuminated edge is given by
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1 2 Ae R/"Sin(2v/3) [a/(Sin~j+Sinv@.)j1/2

x exptlik2r-a(Sinwv1+Sinvs)-h(Coswoi+Couv3)J

3x [(Cos(2Rt/3)-Cos(v'8 -Vj')F 1

I;(Cos (2,n/3)-Cos (2( w+vi +VO~/3)- (74a

32 Ae 7t/4Sin(2,n/3) [a/(Sin~i+Sinvwc)]' 2

'AI (2ink) 1/2  s

Ix [(o% A/)-o-V-j

2 Ae i i" 4 Sjn(2n/3) [aI(-SinVoj-Sin'v8)]1/2

JAS 3 ('7k)1/2 a

x [(o(n3-oso-j)

where sa r in the far field.

3From Figure 72 it can be seen v vi+ 0 To remain

consistent with other derivations in this study let oi 0

I Using the relationship V. =0 + 0 , bistatic RCS can be

3 computed as a function of the angle of incidence and the

bistatic angle. Eq. (74) is now
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2p A 1 'Sin(2n/3) [n/(Sir*lSin(*O+)jl/2

(2wk A

x exp(-ikla(Sin*+Sin(O+8))+h(CoaO+Co'R(O+D))3)

U ~x ((Cos(2it/3)-Cnsi(20/3)F)'

I ; (Cos(2n/3)-Cos(2(wn+2O+0)/3)) I(75a)

2 Ae 1 it4 Sin(21x/3) [a/(Sin9+Sin(9+O)i1 /2
82( Qirk) 1/2r

x eN (i~(ieSn~+O)hcs~o~~)]
3 x [(Cos(21!/3)-Cos(20/3)) 1

T(Cos(2w/3)-Cos(2(20+O)/3)) I (75b)

2 Ae in/ 4 Sin(2n/3) [a/(SinB+Sin(O+0)]1/2

I (2iRk) 1/2  r

3 x" expfik[a(Sine+Sin(S+0) )-h(Co'se+Coa(O+0) ) -iiR/2)

1-

Summing eqs.(75a), (75b), and (75c) and inserting this sum

in eq. (73) gives the bistatic RCS. For the equivalent

monostatic RCS9 vi and v.are equal to 0 + 0/2.

Substituting this into eq.(74) gives
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1 2Ae "'Sin(2it/3) ja/(2Sin(*+#/2)iI/2

1 ~ 1/2r

x exp{-12klaStn(@+0/2)+hCom(*+8/2)J)

I ~x [(Co!'(2,R/3)-Cos(20/3)V 1

S(Cos(2'n/3)-Cos(2(iR+2eO+)/3)) (76a)

1 2 Ae 1 "Sin(2,R/3) [a/(2Sin(9+0/2)]1/2

R 52 tk ) 1/2 rA

x eCps-2k/3-CSi(290/3))1o(+02]

1-

T (Cos(21t3)-Cos(2(2G+0)/3)) 3(76b)

2Ae ~/Sin(2R/3) [a/(2Sin(0+0/2)] 1/2

3 1/k~~2 r

5 ," exp(i2k[a.Sin(O+D/2)-hCos(O+D/2) ]-ii!/2)

"x [(Cos(2w/3)-Cos(20/3)) 1

I Cs2/)Cs2v-90/) 7c
IMonostatic RCS is then covi-.uted by summing eqs. (716a),

3 (76b), and (76c) in eq. (73).

Tn eqs. (75c) an~d (76c)' the phase contains the term

(-iir/2). This comes from (-Sinoi - SinV,) in the

denominator of the geometrical spreading factor.
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Compute~r programs writteun in FORTRAN 77 to calculat~e

3 ~the bistatic and equivale'nt monoatatin RCS are litm.pd bel1ow.

C*********t*t$*(~BICYL. FOR >)***********
r
C THIS PROGRAM COMPUTES THE BTSTATTC RCS OF A

r RIHT IRCLARCYLIDER POTZOTALPOLARIZATION.

C
C.. OUTPUT*. 1,*1.0G1*.,e,,*#*********4*** RrSIN*QUAE*C

C
REAL AHFGKUT,V,X,ALPH(451),LAMBDA
RRFAI RF.TAPT,RC(461),SI,52,S3,TI,Q,QlQ2,Q3
COMPLEX J,YPIP2,P3

PT 3.141593

C

C A = RADIUS OF CYLINDER LIN CM

C LMD WAEEGHIN CM
C THETA :ANGLE OF INCIDENCE (END-ON =0*)
C BETA :BISTATIC ANGLEI C A =:7.50

H =:30.0
OPEN (lSTATUS:'NEW',FILE='B:SIGMARV.DAT')

C I = ANGLE OF INCIDENCE

DO40 1=0,,1
TP'ETA = PI*FLOAT(T)/18C.
WRITTZ(,*) 'THETA =',II C

C N = BISTATIC ANGLE

DO 30 N:= 0,60
WRITE(*.,*) TIN
BETA = FLOAT(N)*PI/180.
LAMBDA =3.0

K 2.*PI/LAMBDA
F -. 2.*SIN(2.*PI/3. ),-(3.*SQRT(2.*PI*K))
X : I./(COS(2.*PI/3. )-COS(2.*BETA/3.))
LI = 180-N-1

Q COS(2.*PT/3.)

Q1I COS(2.*(PI+2.*THETA+BETA)/3.)
Q2 = COS(2.*(2.*I'HETA+BETA)/3.)
Q3 = COS(2.*(PI-2.*THETA-BETA)/3.)
IF (I.EQ .0) THEN 

10



I RCS :PI*(A**2*1K*COS(BRTA/2.))**2
ELSFIF (I.EQ.90) THENU RCS a '*K*A*H**2*COS(AETA/2.)

r DTVIDE BY 0 ERRORS OCCUR IN THE DIFFRACTION
C COEFFICIE.NT. THE FOLLOWING INSTRUCTIONS GIVE THE3 C RCS FOR THE PREVIOUS RISTATIC ANGLE WHFEN THIS OCCURS.
c

EIISETF (Q1.EQ.Q) THEN
GiO To 20I ELSFIe' (Q2.EQ.Q) THEN
GO To 20

F.LSF.IF (Q3.FQ.QQ) THEN3 GO To 20
Et-RETF (I.EQ.QLl) THEN

GO To 20I C EL.SE
G SQRT(A/(STN(AI.PHA)4STN(ALPHA4RF.TA)))
11: A*(SIN(ALPHA)4SIN(AI.PHA+RETA))

& +H* (COS(AL.PHA)+COS(ALPHA+EETA))

S=X+1./(Q-Q3)
P1: F*G*SI*CEXP(J*(PI/4.-K*li))P2I**2CX(J(T4-*)
P3i= F*G*83*CEXP(J*(-I .*PT/4.+K*V))

Y = PI+P2+P3
RCS = 4.*PT*CARS(Y)**2

ENDIF
RC(N) = 10.*ALOG10(fXtS/1.E4)
GO TO 30I20 M =N-1
RC(N) = RC(M)

30 CONTINUE'I c
C OUTPUT THE BISTATIC ANGLE AND THE CORRESPONDING RCS
C

DO 35 M a 0,60
WRTTE(1,32) MRC(M)

342 FORMAT(I3,F12.4)
35 CONTINUEI40 CONTINUE

CLOSE(UNIT:1)3 END

I C** S************ C C ONOCYL. FOR>>>***********
C
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C THIS PROGRAM CALCULATES THE MONOSTATIC RCS,
C HORIZONTAL POLAARTZATION, CORRESPONDING TO A GIVEN

r RISTATIC GEOMETRY ACCORDING TO KF.LLPS MONOSTATIC C
BISTATIC RELATIONSHIP.

c OUTPUT: 1O*LOG0(RCS/1.E4); RCS IN SQUARE CM
r

REAL AH,FOK,UVgX,FREQ(451))LAMBDAI REAL BETAPTRC(451),SIS2sS3,II,Q,QiQ2,Q3
COMPLEX JtYP1,P2lP3

UPT 3.141593

r DFITNE VARIABLES
c
r A = RADIUS OF CYLINDER IN CM
r H = HAL.F CYLINDFER'S LENGTH IN CM
c LAMBDA mWAVELENGTH IN CMI THETA ANGLE OF INCIDENCE (END-ON 0*)
C BETA : ISTATIC ANGLE

A: 7.50
H :30.0
OPEN (1,STATUS='NEW'.,FILE='B:SIGMAFV.DAT")

C
C I =ANGL.E OF INCIDENCEI C

DO 40 1 = 0,90.15
WRITE(lt*) 'ALPHA =',I

C
C N = BTSTATIC ANGLE
C

DO 30 N = 0,60
THETA = PI*(FLOAT(T)+FLOAT(N)/2.)/180.
WRITE(*,*) I,N
BETA = FLOAT(N)*PI/180.

ScC FREQUENCY IS ADJUSTED ACCORDING TO KELL'S
C RELATIONSHIP.

U LAMBDA z 3.O*COS(BETA/7.)
K = 2.*PI/LAMBDA
F = 2.*SIN(2.*PI/3. )/(3.*SQRT(2.*PI*K))I X = I./(COS(2.*PI/3.)-l.)
THET = FLOAT(I)4FLOAT(N)/2.
TERM THET + FLOAT(I)
Q =COS(2.*PI/3.)
QI COS(2.*(PT42.*THETA)/3.)
Q2 COS(2.*(2.*THETA)/3.)
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I 43 aCOS(2.*(PT-2.*THETA)/3.)
11' (THET.EQO0.) THEN

R(.3 aPT*(A**2*IK*CO8(BETA/2.))**2
ELSETF (N.EQ.O) THEN

10 ELSETF(HTE!9)TE3 RCS a 4*X*A*H**2*COS(BETA/2.)

GO TO .10
ELSEI G SQRT(A/(STN(THETA)4STN(THETA)))

U : A*(STN(THETA)+SIN(THETA))
& H*(COS(THETA)+CO8(THETA))

V A*(STN(THETA)4STN(THETA))
& -H*(COS(THETA)+COS(THETA))

3S2= X+1./(Q-Q2)
Pic FRGSSI*CEXP(J*(PI/4.-K*U))
P2= F*G*S2*CEXP(J*(PI/4 .-K*V))
P3= F*G*S3*CEXP(J*(-1 .*PT/4.+K*V))UY =0 PI+P2+P3

IRC(N) z 0=LG0(C/.4
30 CONTINUE

I OUTPUT THE ETSTATIC ANGLE AND CORRESPONDING RCS
DO 35 M = 0,60

WRITE(1,32) MRC(M)
32 FORMAT(13,12.4)I35 CONTINUE

3 CLOSE(UNITzl)
END)
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